3.2.6 \(\int \frac {\cot ^4(e+f x)}{\sqrt {a+a \sin (e+f x)}} \, dx\) [106]

Optimal. Leaf size=135 \[ -\frac {7 \tanh ^{-1}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {a+a \sin (e+f x)}}\right )}{8 \sqrt {a} f}+\frac {9 \cot (e+f x)}{8 f \sqrt {a+a \sin (e+f x)}}+\frac {\cot (e+f x) \csc (e+f x)}{12 f \sqrt {a+a \sin (e+f x)}}-\frac {\cot (e+f x) \csc ^2(e+f x)}{3 f \sqrt {a+a \sin (e+f x)}} \]

[Out]

-7/8*arctanh(cos(f*x+e)*a^(1/2)/(a+a*sin(f*x+e))^(1/2))/f/a^(1/2)+9/8*cot(f*x+e)/f/(a+a*sin(f*x+e))^(1/2)+1/12
*cot(f*x+e)*csc(f*x+e)/f/(a+a*sin(f*x+e))^(1/2)-1/3*cot(f*x+e)*csc(f*x+e)^2/f/(a+a*sin(f*x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.40, antiderivative size = 135, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 7, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {2797, 2728, 212, 3123, 3063, 3064, 2852} \begin {gather*} \frac {9 \cot (e+f x)}{8 f \sqrt {a \sin (e+f x)+a}}-\frac {7 \tanh ^{-1}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {a \sin (e+f x)+a}}\right )}{8 \sqrt {a} f}-\frac {\cot (e+f x) \csc ^2(e+f x)}{3 f \sqrt {a \sin (e+f x)+a}}+\frac {\cot (e+f x) \csc (e+f x)}{12 f \sqrt {a \sin (e+f x)+a}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cot[e + f*x]^4/Sqrt[a + a*Sin[e + f*x]],x]

[Out]

(-7*ArcTanh[(Sqrt[a]*Cos[e + f*x])/Sqrt[a + a*Sin[e + f*x]]])/(8*Sqrt[a]*f) + (9*Cot[e + f*x])/(8*f*Sqrt[a + a
*Sin[e + f*x]]) + (Cot[e + f*x]*Csc[e + f*x])/(12*f*Sqrt[a + a*Sin[e + f*x]]) - (Cot[e + f*x]*Csc[e + f*x]^2)/
(3*f*Sqrt[a + a*Sin[e + f*x]])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2728

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, b*(C
os[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2797

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)/tan[(e_.) + (f_.)*(x_)]^4, x_Symbol] :> Int[(a + b*Sin[e + f*x
])^m, x] + Int[(a + b*Sin[e + f*x])^m*((1 - 2*Sin[e + f*x]^2)/Sin[e + f*x]^4), x] /; FreeQ[{a, b, e, f, m}, x]
 && EqQ[a^2 - b^2, 0] && IntegerQ[m - 1/2] &&  !LtQ[m, -1]

Rule 2852

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[-2*(
b/f), Subst[Int[1/(b*c + a*d - d*x^2), x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3063

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x]
)^(n + 1)/(f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(b*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin
[e + f*x])^(n + 1)*Simp[A*(a*d*m + b*c*(n + 1)) - B*(a*c*m + b*d*(n + 1)) + b*(B*c - A*d)*(m + n + 2)*Sin[e +
f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && LtQ[n, -1] && (IntegerQ[n] || EqQ[m + 1/2, 0])

Rule 3064

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])), x_Symbol] :> Dist[(A*b - a*B)/(b*c - a*d), Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[(
B*c - A*d)/(b*c - a*d), Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f,
A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3123

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C + A*d^2))*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Si
n[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(b*d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x]
)^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a*d*m + b*c*(n + 1)) + c*C*(a*c*m + b*d*(n + 1)) - b*(A*d^2*(m + n
+ 2) + C*(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, m}, x] && NeQ
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2,
 0])

Rubi steps

\begin {align*} \int \frac {\cot ^4(e+f x)}{\sqrt {a+a \sin (e+f x)}} \, dx &=\int \frac {1}{\sqrt {a+a \sin (e+f x)}} \, dx+\int \frac {\csc ^4(e+f x) \left (1-2 \sin ^2(e+f x)\right )}{\sqrt {a+a \sin (e+f x)}} \, dx\\ &=-\frac {\cot (e+f x) \csc ^2(e+f x)}{3 f \sqrt {a+a \sin (e+f x)}}+\frac {\int \frac {\csc ^3(e+f x) \left (-\frac {a}{2}-\frac {7}{2} a \sin (e+f x)\right )}{\sqrt {a+a \sin (e+f x)}} \, dx}{3 a}-\frac {2 \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,\frac {a \cos (e+f x)}{\sqrt {a+a \sin (e+f x)}}\right )}{f}\\ &=-\frac {\sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {2} \sqrt {a+a \sin (e+f x)}}\right )}{\sqrt {a} f}+\frac {\cot (e+f x) \csc (e+f x)}{12 f \sqrt {a+a \sin (e+f x)}}-\frac {\cot (e+f x) \csc ^2(e+f x)}{3 f \sqrt {a+a \sin (e+f x)}}+\frac {\int \frac {\csc ^2(e+f x) \left (-\frac {27 a^2}{4}-\frac {3}{4} a^2 \sin (e+f x)\right )}{\sqrt {a+a \sin (e+f x)}} \, dx}{6 a^2}\\ &=-\frac {\sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {2} \sqrt {a+a \sin (e+f x)}}\right )}{\sqrt {a} f}+\frac {9 \cot (e+f x)}{8 f \sqrt {a+a \sin (e+f x)}}+\frac {\cot (e+f x) \csc (e+f x)}{12 f \sqrt {a+a \sin (e+f x)}}-\frac {\cot (e+f x) \csc ^2(e+f x)}{3 f \sqrt {a+a \sin (e+f x)}}+\frac {\int \frac {\csc (e+f x) \left (\frac {21 a^3}{8}-\frac {27}{8} a^3 \sin (e+f x)\right )}{\sqrt {a+a \sin (e+f x)}} \, dx}{6 a^3}\\ &=-\frac {\sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {2} \sqrt {a+a \sin (e+f x)}}\right )}{\sqrt {a} f}+\frac {9 \cot (e+f x)}{8 f \sqrt {a+a \sin (e+f x)}}+\frac {\cot (e+f x) \csc (e+f x)}{12 f \sqrt {a+a \sin (e+f x)}}-\frac {\cot (e+f x) \csc ^2(e+f x)}{3 f \sqrt {a+a \sin (e+f x)}}+\frac {7 \int \csc (e+f x) \sqrt {a+a \sin (e+f x)} \, dx}{16 a}-\int \frac {1}{\sqrt {a+a \sin (e+f x)}} \, dx\\ &=-\frac {\sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {2} \sqrt {a+a \sin (e+f x)}}\right )}{\sqrt {a} f}+\frac {9 \cot (e+f x)}{8 f \sqrt {a+a \sin (e+f x)}}+\frac {\cot (e+f x) \csc (e+f x)}{12 f \sqrt {a+a \sin (e+f x)}}-\frac {\cot (e+f x) \csc ^2(e+f x)}{3 f \sqrt {a+a \sin (e+f x)}}-\frac {7 \text {Subst}\left (\int \frac {1}{a-x^2} \, dx,x,\frac {a \cos (e+f x)}{\sqrt {a+a \sin (e+f x)}}\right )}{8 f}+\frac {2 \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,\frac {a \cos (e+f x)}{\sqrt {a+a \sin (e+f x)}}\right )}{f}\\ &=-\frac {7 \tanh ^{-1}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {a+a \sin (e+f x)}}\right )}{8 \sqrt {a} f}+\frac {9 \cot (e+f x)}{8 f \sqrt {a+a \sin (e+f x)}}+\frac {\cot (e+f x) \csc (e+f x)}{12 f \sqrt {a+a \sin (e+f x)}}-\frac {\cot (e+f x) \csc ^2(e+f x)}{3 f \sqrt {a+a \sin (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(292\) vs. \(2(135)=270\).
time = 0.41, size = 292, normalized size = 2.16 \begin {gather*} \frac {\csc ^9\left (\frac {1}{2} (e+f x)\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) \left (36 \cos \left (\frac {1}{2} (e+f x)\right )-46 \cos \left (\frac {3}{2} (e+f x)\right )-54 \cos \left (\frac {5}{2} (e+f x)\right )-36 \sin \left (\frac {1}{2} (e+f x)\right )-63 \log \left (1+\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right ) \sin (e+f x)+63 \log \left (1-\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) \sin (e+f x)-46 \sin \left (\frac {3}{2} (e+f x)\right )+54 \sin \left (\frac {5}{2} (e+f x)\right )+21 \log \left (1+\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right ) \sin (3 (e+f x))-21 \log \left (1-\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) \sin (3 (e+f x))\right )}{24 f \left (\csc ^2\left (\frac {1}{4} (e+f x)\right )-\sec ^2\left (\frac {1}{4} (e+f x)\right )\right )^3 \sqrt {a (1+\sin (e+f x))}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Cot[e + f*x]^4/Sqrt[a + a*Sin[e + f*x]],x]

[Out]

(Csc[(e + f*x)/2]^9*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*(36*Cos[(e + f*x)/2] - 46*Cos[(3*(e + f*x))/2] - 54*
Cos[(5*(e + f*x))/2] - 36*Sin[(e + f*x)/2] - 63*Log[1 + Cos[(e + f*x)/2] - Sin[(e + f*x)/2]]*Sin[e + f*x] + 63
*Log[1 - Cos[(e + f*x)/2] + Sin[(e + f*x)/2]]*Sin[e + f*x] - 46*Sin[(3*(e + f*x))/2] + 54*Sin[(5*(e + f*x))/2]
 + 21*Log[1 + Cos[(e + f*x)/2] - Sin[(e + f*x)/2]]*Sin[3*(e + f*x)] - 21*Log[1 - Cos[(e + f*x)/2] + Sin[(e + f
*x)/2]]*Sin[3*(e + f*x)]))/(24*f*(Csc[(e + f*x)/4]^2 - Sec[(e + f*x)/4]^2)^3*Sqrt[a*(1 + Sin[e + f*x])])

________________________________________________________________________________________

Maple [A]
time = 2.27, size = 144, normalized size = 1.07

method result size
default \(\frac {\left (1+\sin \left (f x +e \right )\right ) \sqrt {-a \left (\sin \left (f x +e \right )-1\right )}\, \left (-21 \arctanh \left (\frac {\sqrt {-a \left (\sin \left (f x +e \right )-1\right )}}{\sqrt {a}}\right ) \left (\sin ^{3}\left (f x +e \right )\right ) a^{3}+27 \left (-a \left (\sin \left (f x +e \right )-1\right )\right )^{\frac {5}{2}} \sqrt {a}-56 \left (-a \left (\sin \left (f x +e \right )-1\right )\right )^{\frac {3}{2}} a^{\frac {3}{2}}+21 \sqrt {-a \left (\sin \left (f x +e \right )-1\right )}\, a^{\frac {5}{2}}\right )}{24 \sin \left (f x +e \right )^{3} a^{\frac {7}{2}} \cos \left (f x +e \right ) \sqrt {a +a \sin \left (f x +e \right )}\, f}\) \(144\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(f*x+e)^4/(a+a*sin(f*x+e))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/24*(1+sin(f*x+e))*(-a*(sin(f*x+e)-1))^(1/2)*(-21*arctanh((-a*(sin(f*x+e)-1))^(1/2)/a^(1/2))*sin(f*x+e)^3*a^3
+27*(-a*(sin(f*x+e)-1))^(5/2)*a^(1/2)-56*(-a*(sin(f*x+e)-1))^(3/2)*a^(3/2)+21*(-a*(sin(f*x+e)-1))^(1/2)*a^(5/2
))/sin(f*x+e)^3/a^(7/2)/cos(f*x+e)/(a+a*sin(f*x+e))^(1/2)/f

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^4/(a+a*sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate(cot(f*x + e)^4/sqrt(a*sin(f*x + e) + a), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 404 vs. \(2 (125) = 250\).
time = 0.38, size = 404, normalized size = 2.99 \begin {gather*} \frac {21 \, {\left (\cos \left (f x + e\right )^{4} - 2 \, \cos \left (f x + e\right )^{2} - {\left (\cos \left (f x + e\right )^{3} + \cos \left (f x + e\right )^{2} - \cos \left (f x + e\right ) - 1\right )} \sin \left (f x + e\right ) + 1\right )} \sqrt {a} \log \left (\frac {a \cos \left (f x + e\right )^{3} - 7 \, a \cos \left (f x + e\right )^{2} - 4 \, {\left (\cos \left (f x + e\right )^{2} + {\left (\cos \left (f x + e\right ) + 3\right )} \sin \left (f x + e\right ) - 2 \, \cos \left (f x + e\right ) - 3\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {a} - 9 \, a \cos \left (f x + e\right ) + {\left (a \cos \left (f x + e\right )^{2} + 8 \, a \cos \left (f x + e\right ) - a\right )} \sin \left (f x + e\right ) - a}{\cos \left (f x + e\right )^{3} + \cos \left (f x + e\right )^{2} + {\left (\cos \left (f x + e\right )^{2} - 1\right )} \sin \left (f x + e\right ) - \cos \left (f x + e\right ) - 1}\right ) - 4 \, {\left (27 \, \cos \left (f x + e\right )^{3} + 25 \, \cos \left (f x + e\right )^{2} - {\left (27 \, \cos \left (f x + e\right )^{2} + 2 \, \cos \left (f x + e\right ) - 17\right )} \sin \left (f x + e\right ) - 19 \, \cos \left (f x + e\right ) - 17\right )} \sqrt {a \sin \left (f x + e\right ) + a}}{96 \, {\left (a f \cos \left (f x + e\right )^{4} - 2 \, a f \cos \left (f x + e\right )^{2} + a f - {\left (a f \cos \left (f x + e\right )^{3} + a f \cos \left (f x + e\right )^{2} - a f \cos \left (f x + e\right ) - a f\right )} \sin \left (f x + e\right )\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^4/(a+a*sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

1/96*(21*(cos(f*x + e)^4 - 2*cos(f*x + e)^2 - (cos(f*x + e)^3 + cos(f*x + e)^2 - cos(f*x + e) - 1)*sin(f*x + e
) + 1)*sqrt(a)*log((a*cos(f*x + e)^3 - 7*a*cos(f*x + e)^2 - 4*(cos(f*x + e)^2 + (cos(f*x + e) + 3)*sin(f*x + e
) - 2*cos(f*x + e) - 3)*sqrt(a*sin(f*x + e) + a)*sqrt(a) - 9*a*cos(f*x + e) + (a*cos(f*x + e)^2 + 8*a*cos(f*x
+ e) - a)*sin(f*x + e) - a)/(cos(f*x + e)^3 + cos(f*x + e)^2 + (cos(f*x + e)^2 - 1)*sin(f*x + e) - cos(f*x + e
) - 1)) - 4*(27*cos(f*x + e)^3 + 25*cos(f*x + e)^2 - (27*cos(f*x + e)^2 + 2*cos(f*x + e) - 17)*sin(f*x + e) -
19*cos(f*x + e) - 17)*sqrt(a*sin(f*x + e) + a))/(a*f*cos(f*x + e)^4 - 2*a*f*cos(f*x + e)^2 + a*f - (a*f*cos(f*
x + e)^3 + a*f*cos(f*x + e)^2 - a*f*cos(f*x + e) - a*f)*sin(f*x + e))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\cot ^{4}{\left (e + f x \right )}}{\sqrt {a \left (\sin {\left (e + f x \right )} + 1\right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)**4/(a+a*sin(f*x+e))**(1/2),x)

[Out]

Integral(cot(e + f*x)**4/sqrt(a*(sin(e + f*x) + 1)), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^4/(a+a*sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Warning, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Ch
eck [abs(co

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\mathrm {cot}\left (e+f\,x\right )}^4}{\sqrt {a+a\,\sin \left (e+f\,x\right )}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(e + f*x)^4/(a + a*sin(e + f*x))^(1/2),x)

[Out]

int(cot(e + f*x)^4/(a + a*sin(e + f*x))^(1/2), x)

________________________________________________________________________________________